

Development and Validation of Rp-Hplc Method for Estimation of Apremilast (Anti Arthritis) Drug

MayuriBabasaheb Gaikwad *1, Dr Prachi P. Udapurkar (M.Pharm, Ph.D.,D.B.M.), Dr Lahu.D. Hingane(Principle At AdityaClg ,Beed). Adity Pharmacy Collage, Beed, Department of Quality Assurance

Adity Pharmacy Collage, Beed, Department of Quality Assurance

Submitted: 01-06-2022

Revised: 14-06-2022

Accepted: 16-06-2022

ABSTRACT

Apremilast drug is administrated by oral root and it is phosphodiesterase 4 inhibitor, now approved with significant amounts of adverse effect, newer treatment options with an efficacious outcome, sans the toxicity, is something all clinicians would implement readily in their therapeutic regimens. Apremilast is one such drug which has shown promise in the management of psoriasis, PsA, and a few other dermatologic disorders. This review will throw light on the dermatologic prespective regarding apremilast.

Apremilast is used for treatment of psoriasis and psoriatic arthritis. It may also be beneficial for other inflammayor diseases relevant to the immnune system.

KEY WORDS : Apremilast, Phosphodiesterase 4 inhibitor, psoriasis, psoroaticarthropathy

I. INTRODUCTION

Apremilast, sold under brand name Otezla among others it is also used to treat the mouth related ulcers in people with bahcet'ssyndrome, psoriasis, psoriatic arthritis. It is approved by US Food and drug Administration in 2014 and press launch done in September 23, 2014.

• Objectives:

To develop new, simple, sensitive, accurate, and economical analytical method for the determination of assay of Anti-Arthritis Drug in tablet dosage from by RP-HPLC.

01 DRUG PROFILE:

Name:Apremilast Structure:

Fig. Structure of Apremilast

Table General profile of Apremilast

Category	Anti- Arthritis
Chemical Name	N-{2-[(1S)-1-(3-ethoxy-4-methoxyphenyl)-2- methanesulfonylethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol- 4-yl}acetamide
Molecular Formula	$C_{22}H_{24}N_2O_7S$
Molecular Weight	460.5 g/mol
Description	It is a white to pale yellow, non-hygroscopic powder

Mecha nism	Solubility	insoluble in water and buffer solutions in a wide pH range, but is soluble in lipophilic solvents such as acetone, acetonitrile, butanone, dichloromethane, and tetrahydrofuran.	its metab
of action	рКа	12.58	olites. Only
premil	A Melting point	156.1°C	3% of the
ast is			origina

a small molecule inhibitor of PDE4, an enzyme that down cyclic adenosine breaks monophosphate (cAMP). In inflammatory cells, PDE4 is the dominant enzyme responsible for this reaction. The resulting increase in cAMP levels down-regulates expression of a number of proinflammatory factors like tumor necrosis factor alpha (TNFa), interleukin 17, interleukin 23, and others, and up-regulates manv the antiinflammatory interleukin 10.

Pharmacokinetics

Apremilast is absorbed from the gut well (73%) and independently of food intake, and reaches peak blood plasma concentrations after 2.5 hours. Plasma protein binding is 68%. It is metabolised in the liver, mainly via the enzyme CYP3A4, but to a minor extent via CYP1A2 and CYP2A6. The main metabolite is O-

desmethylapremilast glucuronide. The half-life is 6–9 hours. The substance is eliminated through the kidney (58%) and feces (39%), mainly in form of 1 substance are found in the urine, and 7% in the feces.

PLAN OF WORK:

≻ Estimation of Anti-ArthritisDrug in tablet dosage from will be done by following methods.

Selection of Drugs and Formulation

By literature and market survey

Selection of analytical techniques

- Estimation by UV-Visible spectroscopy. \geq
- ⊳ Identification by IR Spectroscopy
- \triangleright Development and validation of RP-HPLC method

Method development by RP-HPLC.

Validation of proposed method.

System suitability parameter

- ~ Specificity
- ⁄ Linearity and Range
- ~ Accuracy
- Precision

Drug used in experiment:

Table: Drug and drug product samples suppliers and manufacturers

Name of drug and drug product	Supplier and manufacturer by
Apremilast	Micro labs ltd

REAGENTS:

Table · I ist of Reagant

G . N			
Sr.No	Chemical	Make	
1	Water	Rankem	
2	Acetonitrile	Merck life science	
3	Methanol	Merck life science	
4	Triethylamine	Merck life science	
5	0.45 μ Nylon	Mdi	

INSTRUMENTS:

HPLC:

Make	Waters e2695

Pump	Reciprocating Water-510
Detector	Waters 2998 PDA and 2489 UV
Software	Empower 3

SPECTROPHOTOMETER: Double beam UVvisible spectrophotometer with 10mm Matched quartz cells Model UV1800,MakeShimadzu. RESULTS AND DISCUSSION A simple, precise and economic RP-HPLC method was developed and validated for estimation of Apremilastin bulk and tablet. The method was validated as per ICH guidelines by using various validation parameters such as Linearity, accuracy, precision, specificity

Fig: Spectra showing λ max of Apremilast

b Determination of λ max of Apremilast

Sr. No.	Wavelength (nm)	Absorbance
1.	233	0.3942 A ⁰

Identification by IR Spectroscopy:

Fig: FTIR spectrum of ApremilastStandard Solution

Гable 7.2 IR	peak Assi	gnment value	e of Apremilast
--------------	-----------	--------------	-----------------

Standard IR Ranges (cm ⁻¹)	IR Ranges (cm ⁻¹)	Functional Group
2600-2550	2601.47	S-H Stretching
1650-1580	1585.90	N-H Bending
1410-1380	1379.16	S=O Stretching
730-665	716.96	C=C Bending

Reverse Phase High Performance Liquid Chromatography Method Development Different trials taken were as follows TRIAL: 1

	Chromatographic Conditions:
Column	ACE C18 (250 x 4.6mm) 5µ
Mobile Phase	Water:Methanol (90:10 v/v)
Flow Rate	0.8 mL/min
Injection Volume	5 μL
Wavelength	233 nm
Column Temp.	25°C
Auto sampler Temp.	25°C
Run time	7.0 min.
Needle wash	Water: Methanol (20:80 v/v)
Seal wash	Water: Methanol (80:20 v/v)

Fig. Typical chromatogram for Trial-1

Observation: Usingwater : methanol mobile phase apremilast Standard solutioninjected. Analyte peak not observed in chromatogram. Plan baseline observed. Conclusion: Mobile phase ratio need to optimize

TRIAL: 2

Chromatographic Condition:

Column	ACE C18 (150 x 4.6mm) 5µ
Mobile Phase	Water, methanol (50:50 v/v)
Flow Rate	0.8 mL/min
Injection Volume	5 μL
Wavelength	233 nm
Column Temp.	25°C
Auto sampler Temp.	20°C
Run time	30.0 min.
Needle wash	Water: Methanol (20:80 v/v)
Seal wash	Water : Methanol (80:20 v/v)

Observation: By optimizing mobile phase ratio apremilast Standard solutioninjected. Analyte peak observed at 5.5 min in chromatogram.

Conclusion: Analyte volume need to optimize.

Chromatographic Condition:		
Column	ACE C18 (150 x 4.6mm) 5µ	
Mobile Phase	Water, methanol(50:50v/v)	
Flow Rate	1.0 mL/min	
Injection Volume	10 μL	
Wavelength	233 nm	
Column Temp.	25°C	
Auto sampler Temp.	20°C	
Run time	30.0 min.	
Needle wash	Water: Methanol (20:80 v/v)	
Seal wash	Water: Methanol (80:20 v/v)	

TRIAL: 3 Chromatographic Condition:

Observation: Analyte peak eluted at retention time 5.523min in chromatogram. **Conclusion:** analyte concentration and base line needed to optimize.

Chromatographic Condition:			
Column	waters symmetry C18 (150 x 4.6mm) 5µ		
Mobile Phase	Water, methanol and Triethylamine (50:50:2v/v)		
Flow Rate	1.0 mL/min		
Injection Volume	15 μL		
Wavelength	233 nm		
Column Temp.	35 °C		
Auto sampler Temp.	20°C		
Run time	8.0 min.		
Needle wash	Water: Methanol (20:80 v/v)		
Seal wash	Water: Methanol (80:20 v/v)		

Fig. Typical chromatogram for Trial- 4

Observation: Analyte peak eluted at retention time 4.830 min in chromatogram. Plain baseline observed. **Conclusion:** Mobile phase needed to be changedfurtherto decrease the retention time.

	Cinomatographic Condition:
Column	waters symmetry C18 (150 x 4.6mm) 5µ
Mobile Phase	Water, methanol and Triethylamine (30:70:2v/v)
Flow Rate	1.2mL/min
Injection Volume	15 μL
Wavelength	233 nm
Column Temp.	35 °C
Auto sampler Temp.	20°C
Run time	8.0 min.
Retention Time	3.931 min.
Needle wash	Water: Methanol (20:80 v/v)
Seal wash	Water: Methanol (80:20 v/v)

TRIAL: 5 Chromatographic Condition:

Fig. Typical chromatogram for Trial-5

Observation: ApremilastpeakwaselutedatRT3.931min.Plainbaselineobserved.peakshowspeakpurity.Theoreticalplate,symmetry was found to be satisfactory.

Conclusion:So conditions of trial 5 were selected as optimized chromatographic conditions

METHOD VALIDATION

The following parameters were considered for the analytical method validation of title ingredients. System Suitability.

- Specificity,Linearity,Precision
 - system suitability test

Tailing factor	1.1
Theoretical plates	12354
S. No.	Area

 \triangleright

1	1670039
2	1650937
3	1662309
4	1669325
5	1673352
6	1656309
Mean	1663712
Std DEV.	8768.6
% RSD	0.5

Specificity(Identification and Interference)

Component	Retention	Tailing	Theoretical	Purity	Purity
	time (min)	factor	plates	angle	threshold
Blank	-	-	-	-	-
Placebo solution	-	-	-	-	-
Standard solution	3.350	1.2	13650	1.68	2.15
Sample solution	3.432	1.0	12037	1.90	2.67
Spike solution					
Sample solution	3.351	1.1	12253	1.84	2.54
N-Acetyl Amine	1.96	1.5	4563	1.11	1.94
Des-Acetyl	2.927	1.4	6306	0.96	1.56
Individual Impurity Solution					
N-Acetyl Amine	1.98	1.7	5036	0.84	1.20
Des-Acetyl	2.885	1.5	6096	0.80	1.49

Chromatogram of Blank

Linearity

Level (%)	Concentration	Response		
	(ppm)	1	2	Mean
50	30.24	824036	819909	821973
75	45.36	1220938	1245968	1233453
100	60.48	1682698	1678630	1680664
125	75.60	2090638	2058960	2074799
150	90.72	2468309	2454367	2461338
Co-relation coefficient (r ²)			0.999	
SLOPE				24249.18
Y-INTERCEPT				6415
WORKING LEVEL AREA			1680664	
%LIMIT OF Y-INTERCEPT (± 5 OF WORKING				0.38
LEVEL)				

Linearity plot

Precision:

System precision:Systemprecision parameter performed to verify system is precise to method and method parameter. The Tailing

factor, Theoretical plates and reproducibility of the chromatographic system are adequate for analysis to be done.

Tailing factor	1.2	
Theoretical plate	12367	
Sr. No.	Area	
1	1675398	
2	1680637	
3	1692368	
4	1670852	
5	1684307	
6	1679380	
Mean	1680490	
% RSD	0.4	

Table : Result of System precision

Pooled Intermediate Precision data

Parameter	Method Precision(Analyst-I)	Intermediate	
		Precision(Analyst-II)	
HPLC Instrument No.	HPLC-047	HPLC-028	
Date of analysis	XXX	XXX	
HPLC column No.	LC-024	C18-049	
Sample No.	% Assay		
1	99.8	100.1	

2	100	100.5
3	99.8	99.5
4	100.3	99.4
5	100.1	100.3
6	99.0	99.9
Mean	99.8	100
Average	99.9	
% RSD of all determinations	0.4	

II. CONCLUSION

1 RP-High Performance Liquid Chromatography (HPLC) Method:

HPLC has gained the valuable position in the field of analysis due to ease of performance, specificity, sensitivity and the analysis of sample of complex nature. This technique was employed in the present investigation for estimation of Apremilasttabletformulation. HPLC Water2469 with waters symmetry C18(150 mm X 4.6 mm), 5µm columnandUV/PDA detector with empower pro Software was used for the study. The standard and sample solution of Apremilastwere prepared in diluent.Different pure solvents of varying polarity in different proportions were tried as mobile phase for development of the chromatogram.

The mobile phase that was found to be most suitable was WaterandMethanol, Triethylaminethewavelength233 nm were selected for the evaluation of the chromatogram ofApremilastrespectively. The selection of the wavelength was based on the λ max obtained by UV scanning of standard laboratory mixture in water: methanol. This system gave good resolution and optimum retention time with appropriate tailing factor (<2).

After establishing the chromatographic conditions, standard laboratory mixture was prepared and analysed by procedure described under Materials and methods. It gave accurate, reliable results and was extended for estimation of drugs in tablet formulation.

The results from table clearly indicate that the RP-HPLC technique can be successfully applied for the estimation of above-mentioned drugs in their formulation

REFERENCES

- [1]. Mendham j., denny r. C., thomas m.; vogel's text book of quantitative chemical analysis; pearson education limited; 6th edition, 2008, 29-39.
- [2]. Chatwal g. R., anand s. K.; instrumental methods of chemical analysis; himalaya

publishing house, mumbai; 11th edition, 2005, 1.1-1.2, 2.108-2.109, 2.151-2.153.

- [3]. Kasture a. V., wadodkar s. G., mahadikk.r., more h.n.; pharmaceutical analysis instrumental methods; niraliprakashan; 12th edition, 2005; 148-156.
- [4]. Skoog d., leqary j.; principle of instrumental analysis; thomsonasiapvt ltd. Singapore; 54th edition, 2004; 3-8.
- [5]. Skoog d., holler f., timothy a., nieman n.; principles of instrumental analysis; saunders college publications, london; 4th edition, 1992; 1-2, 338-340.
- [6]. Settle f.; handbook of instrumental techniques of analytical chemistry. 1st edition, 2004, 19-21, 609-617.
- [7]. Corners k. A., textbook of pharmaceutical analysis, a wileyinterscience publication, 1st edition, 1967, 475-478
- [8]. Kasture a. V., wadodkar s. G., mahadikk.r., more h.n; textbook of pharmaceutical analysis-ii, niraliprakashan, 13th edition, 2005,1, 47-56
- [9]. British pharmacopoeia, 1993, volume ii, 180-190.
- [10]. Kakder.b.,kasturea.v., wadodkar s. G.; indian journal of pharmaceutical sciences, 2002, 64(1), 24-27.
- [11]. Dyadeg.k., sharmaa.k.; indian drugs, 2001, 38(2): 75-78.
- [12]. Sethip.d.; qualitativie analysis of drugs in pharmaceutical formulations, 3rd edition, 1997, 182-184.
- [13]. Swarbrickjames.,boylanjames.c.; encyclopedia of pharmaceutical technology, volume i, marceldekkerinc., new york, 1998, 217 - 224.